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This article discusses the advantages and caveats of a statistical link analysis method estab-
lished by J. Yuen in the 1970s. Since then, the Jet Propulsion Laboratory has adopted this 
approach as flight principles in order to conduct link analysis for its deep-space missions. 
This article presents three new results: 1) we show that by invoking Lyapunov’s condition 
of the central limit theorem, the Gaussian approximation of statistical link analysis is in-
deed mathematically valid if there is no single link parameter with a variance that is much 
larger than the others; 2) we discuss a system engineering approach of incorporating expert 
opinions as a mean to mitigate the lack of statistical knowledge of the link parameters; and 
3) we also introduce the use of saddle-point approximation to estimate the tail probability 
in statistical link analysis in situations when the Gaussian approximation does not apply. 

I. Introduction

A link budget is a system engineering tool that is used to evaluate mission data return and 
aid in communication system design. It consists of the calculation and tabulation of the 
useful signal power and the undesirable noise power available at the receiver. The signal and 
noise terms in the link equation are mathematical abstractions of the performance behavior 
expressed in decibel1 (dB) units, and by summing up these terms, one can come up with an 
overall signal-to-noise ratio (SNR) estimate that can be used to characterize communication 
system performance, to support system design trade-offs, and to manage the operational 
risks associated with the usage of a link. 

The main purpose of carrying out communication link analysis is to maximize the data 
throughput over a noisy channel, and at the same time to maintain the integrity of the 
data. Communication link characterizations are inherently statistical due to the uncertain-
ties associated with the signal (distortion) and the channel (noise). The link parameters in a 
link equation are also statistical in nature as they are typically obtained from measurements 
of the hardware components, and are subject to measurement uncertainties. 
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In the context of maximizing mission data return for a communications pass, the link mar-
gin policy associated with the data rate is analogous to booking passengers on a jet flight: 
when the aircraft takes off, all the empty seats are useless.2 Thus, it is highly desirable that 
one can accurately characterize the link performance in a statistical manner, such that one 
can design a link and establish the link margin policy based on quantifiable statistical confi-
dence levels that meet the link quality requirements.3 

J. Yuen formulated the analysis framework of statistical link analysis in the 1970s [1,2,3]. 
Since then, the Jet Propulsion Laboratory (JPL) has adopted this approach in the form of 
flight principles for conducting link analysis for its deep-space missions. The JPL projects 
and the Deep Space Network (DSN) have been measuring the performance statistics of 
hardware components and conducting experiments to characterize the statistics of weather 
effects on the link. These statistical data are thus folded into the statistical link analysis 
process. 

Statistical link analysis has not been popular outside JPL. Part of the reason for this is not 
just the lack of understanding of the methodology, but also the main challenge with the 
unavailability of the link parameter statistics and the effort required to characterize it. This 
is particularly true for missions in the proposal phase, where information about flight or 
ground communications hardware and systems can be sketchy and sometimes might not 
exist. Therefore, the communication system performance is reliant upon educated guesses 
and speculation. This kind of link analysis typically assumes a single value for each link 
parameter, and assumes an arbitrary number in dB as a link margin requirement4 [4]. When 
the link calculation yields a margin higher than or equal to the requirement, one would 
declare that the link is “closed.” The problems of this approach are: 1) what are the values 
to be used as link parameters: best case, nominal case, or worst case? 2) What is the appro-
priate link margin policy? If 3 dB is chosen as the link margin policy, why is 3 dB enough? 
In other words, the typical link analysis approach is a “rule-of-thumb” method at best, 
and has no mathematical and statistical justification and cannot fulfill the fundamental 
objective of link analysis, which is to quantify the likelihood of whether a communication 
session with a given link configuration would be successful in transporting the data from 
point A to point B. In the absence of detailed statistical knowledge of link parameters, some 
telecommunication analysts resort to using numbers for a worst-case scenario. This ap-
proach does not take advantage of the statistical and random nature of the link, and results 
in an overly conservative link with a huge hidden link margin — analogous to the empty 
seats of an airplane, which are useless when the flight takes off. 

This article addresses some of the fundamental principles of statistical link analysis. We 
also try to narrow the gap between a mathematically vigorous approach that demands the 
complete statistical characterization of the link, which sometimes can be hard to achieve, 
and the rule-of-thumb approach that uses single link parameters that are easier to realize, 
yet the approach lags mathematical justification. 

2 In today’s cutthroat competitive environment of the airline industry, airline companies prefer overbooking the flights 
to ensure full utilization of available seats, and to provide compensation to the frustrated customers who have to catch 
the next flight. This approach is analogous to the retransmission strategy used in data communication networks.

3 Typically the link quality requirements are expressed in some form of error rate such as bit-error rate (BER), frame-error 
rate (FER), packet-loss rate, etc.

4 The value 3 dB is a popular link margin requirement number.
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We discuss the following topics in this article. In Section II, we provide an overview of sta-
tistical link analysis and discuss the strengths and caveats of its mathematical basis and as-
sumptions. We also prove that the Gaussian approximation of statistical link analysis is not 
just a “hand-waving” approximation, but is mathematically valid under certain conditions. 
In Section III, we instigate a new mindset5 of link analysis that incorporates expert opinions 
as a means to overcome the lack of statistical knowledge of link parameters. This approach 
allows one to use sound statistical instruments to integrate expert opinions in the form of 
an educated guess of the probability distribution function (pdf ) of a link parameter, thus 
enabling one to quantify the link performance statistically with the best available informa-
tion. In Section IV, we introduce the use of saddle-point approximation to estimate the tail 
probability in statistical link analyses in situations when the Gaussian approximation does 
not apply. 

II. Mathematical Validity of Gaussian Approximation of Statistical Link Analysis

Link analysis starts with the following link equation:
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where EIRP is the effective isotropic radiator power of the transmitter, G/T  is the gain over 
system noise temperature, which is a measure of the receiver sensitivity, k is Boltzmann’s 
constant (1.38 × 10–23 J/K), Ls = m

4rd` j2 is the space-loss where d  is the distance between 
transmitter and receiver, m is the wavelength, and Lo denotes all other losses and degrada-
tion factors not specifically addressed in Equation (1). 

The EIRP term includes all the gain and loss terms on the transmission side, including 
pointing loss, the term G/T  includes all the gain and loss terms on the receiver side, and 
the Lo term includes contributions of the intervening transmission media. Note that the 
link Equation (1) is multiplicative in nature. By taking the base-10 logarithm and multiply-
ing by 10 on both sides of Equation (1), we convert the multiplicative relationship of the 
gain and loss terms to become an additive relationship. The additive terms are expressed in 
units of dB. Equation (1) can therefore be rewritten as

( ) ( ) / ( ) ( ) ( ) ( )
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T
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The concept of statistical link analysis relies on the additive nature of the link equation as 
given in Equation (2). Without loss of generality, we denote the link parameters (with units 
of dB) in terms of xi . Each of the statistical link parameters xi  can be described in terms of 
a design value xdesign,i, a minimum value xmin,i, a maximum value xmax,i, and a pdf   fi xi^ h 
such that fi xi^ h ! 0 for xmin,i # x # xmax,i  and fi xi^ h= 0 for xi 1 xmin,i  and xi 2 xmax,i. Some 
common forms of f x^ h are the rectangular (or uniform), triangular, and Gaussian distribu-
tions.6 From this setup, one can deduce the mean of x (denoted by mx) and the variance of 
x (denoted by vx2). Let’s denote the design value Dx = xdesign, and define the favorable toler-
ance Fx = xmax - xdesign and the advance tolerance Ax = xmin - xdesign. The computations of 

5 In the context of this article, the term “mindset” refers to the philosophical view or belief that includes a set of  
assumptions and methods to approach a problem or situation.

6 Strictly speaking, the Gaussian distribution is unbounded. In link analysis, it is typically used to model weather effects 
or to model the combined effect of a number of link parameters (derived parameters).

(1)

(2)
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the mean and variance of the uniform, triangular, and Gaussian distribution are given in 
Figure 1. 

  

Figure 1. Conversions between design, favorable tolerance, and adverse tolerance and mean and variance 

of some popular probability density functions (from [1]).

Assume that there are n  link parameters, xi ’s that are independent. The ensemble of these 
link parameters z = xi

i

/  has mean mz = mxi
i

/  and variance vz2 = vxi
2

i

/ . The pdf of z , which 
we denote as f z^ h, can be computed by convolving fx1 x1^ h, fx2 x2^ h,f, fxn xn^ h. This is in gen-
eral a computationally intensive process, as this involves levels of integration. 

To simplify the computation, when a large number of independent link parameters are 
added together (in dB), Yuen proposed to approximate the resulting received SNR term with 
a Gaussian distribution N mz,vz2^ h, where mz is the mean and vz2 is the variance as defined 
above. From this, one can design a link and establish link margin policy based on a statisti-
cal confidence level measured in terms of the v of a Gaussian distribution function (e.g.,  
2v event, 3v event, etc.). 

Note that in general, link parameters have different means, variances, and pdfs; thus, the 
above Gaussian approximation approach does not conform to the sufficient conditions of 
the classical central limit theorem, which requires all the link parameters to be independent 
and identically distributed. The procedure outlined in [1] did not justify this Gaussian ap-
proximation in a mathematically rigorous manner, and it did not explicitly state the condi-
tions under which this Gaussian approximation is valid. However, decades of experience 
show that for links where there are many link parameters, this approach works well in most 
cases and closely approximates the Gaussian distribution. 

Computation of mean and variance of common probability density functions

D = Design value
M = Mean
V = Variance
A = Adverse tolerance, which has a negative value for all link parameters except noise 
spectrum density and noise bandwidth
F = Favorable tolerance, which has a positive value for all link parameters except noise 
spectrum density and noise bandwidth

For noise spectral density and noise bandwidth, the favorable tolerance is a negative 
number, while the adverse tolerance is a positive number.

Uniform
M = D + (F+A)/2
V = (F–A)2/12

Triangular
M = D + (F+A)/3
V = (F2+A2–AF)/18

Gaussian
M = D + (F+A)/2
V = (F–A)2/36

D + A D + A D + AD + F D + F D + F
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In this article, we fill this gap by invoking a variant of the central limit theorem called 
Lyapunov’s condition to prove that the aforementioned Gaussian approximation is indeed 
mathematically applicable under certain assumptions. 

Lyapunov’s condition states that for a sequence of independent variables xi ’s such that each 
xi  has a finite mean m x i  (m x i  can be different from m x j) and a finite variance vxi2  (vxi2  can 
be different from vx j2 ), then z = xi

i

/  converges in distribution to a Gaussian distribution 

N mz,vz2^ h as long as the following condition is satisfied: 

For some d = 0, lim
N " 3 v z

2 + d

1
E

i = 1

N

/ x i - m x i
2 + d^ h = 0

The physical meaning of Lyapunov’s condition is that the random variable xi ’s need to 
have finite means and variances, and there is not a dominant term with a variance that 
greatly outweighs or exceeds the variances of the other terms. 

To illustrate this point, we consider a toy example of the sum of four “well-behaved”7 ran-
dom variables with their distributions given in Table 1. Figure 2 shows the different shapes 
of these distributions. 

(3)

Table 1. List of probability density functions.

Variables xi  pdf fi xi^ h Mean and Variance

x1: Uniform

x2 : Uniform

x3 : Triangular

x4 : Gaussian

f1 x1^ h = 1	 for 1 # x1 # 2  

	 = 0	 otherwise

f2 x2^ h = 1	 for 2 # x2 # 3

	 = 0	 otherwise

f3 x3^ h = 4x3 	 for 0 # x3 # 0.5

	 = 4 1 - x3^ h	 for 0.5 # x3 # 1.0

	 = 0	 otherwise

f4 x4^ h=
2r

4 e 2

4 x4-1^ h2
	 for -3 # x4 # 3

Mean = 1.5

Variance = 1/12

Mean = 2.5

Variance = 1/12

Mean = 0.5

Variance = 1/24

Mean = 1.0

Variance = 1/4

7 “Well-behaved” means that the pdfs of random variables have variances that are comparable.

The random variable z = x1 + x2 + x3 + x4 has a mean of 5.5 and a variance of 11/24. Let 

f z
G z^ h be the Gaussian approximation for z  with the same mean and variance. The plots of 

fz z^ h and f zG z^ h are compared in Figure 3. One can see from the example that the exact pdf 

fz z^ h, which is very complicated, and its Gaussian approximation f zG z^ h, are almost indis-
tinguishable except in the vicinity about the mean. This example illustrates that for the 
purpose of finding the tail probability, q+ a^ h= fz z^ hdz

a

3# , where a of interest is at least  
2v away from the mean, the Gaussian approximation f zG z^ h is a good approximation to use 
to evaluate the risk associated with the link usage. 
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Figure 2. Diagram of pdfs.

Figure 3. Comparison of fz(z ) and fz   (z ). 
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In Section IV, we will describe a method that uses another variant of the central limit theo-
rem called the saddle-point approximation, which is used to estimate the tail probability 
of the sum of independent variables where there are one or more terms with dominant 
uncertainties. 

III. Notion of Incorporating Expert Opinions as a Means to Mitigate the Lack of 
Statistical Knowledge of Link Parameters

The main challenge of statistical link analysis is in addressing the difficulties in obtaining 
the statistical knowledge of the link parameters. For a mission in development or opera-
tional phases, the issue primarily lies in the effort required to statistically characterize the 
link parameters of the spacecraft, intervening media, and the network. For a mission in 
proposal or formulation phases, the problem is that sometimes the flight or ground com-
munication hardware and systems might not exist, and the communication system perfor-
mance is reliant upon educated guesses and speculations. Due to the difficulties associated 
with the lack of statistical knowledge of link parameters, heuristic approaches are typically 
used. One typical heuristic approach is to consider each link parameter as a single num-
ber, and to compute the overall SNR by just adding the gain and loss numbers together. A 
tendency of this approach is that people typically pick the worst-case numbers for use in 
the link equation, and the resulting link configuration or communication system design 
would be highly conservative with a lot of hidden and unquantifiable margin. 

To alleviate the problem of the lack of statistical knowledge of link parameters, we propose 
to use expert opinions in the form of an educated guess of the pdf of a link parameter 
whose statistical knowledge is sketchy or lacking. By aggregating all the pdfs, both the 
well-established pdfs generated from historical data and measurements and the expert-
opinion-derived pdfs in the statistical link analysis framework as outlined in Section II, the 
full statistical characterization of the resulting SNR in the form of the Gaussian approxi-
mation of the pdf can be computed based on the best available information at a given 
time. When more information is available and new measurements are made to improve 
the statistical knowledge of the link parameters, the expert-opinion-driven pdfs can be 
refined and incorporated in the statistical link analysis framework. This approach helps 
to bound the trade-space and to avoid the link design and development from marching 
into a solution that can be either too conservative or too risky in the time-evolving design 
process, as redesign in the late phase is always an expensive alternative. 

Similar approaches of eliciting expert opinions to fill the gap of the lack of knowledge in 
the design process can be found in the recent literature in the area of system design and 
cost analysis [5,6], and are being studied from the viewpoint of merging well-established 
old information with sketchy new information in large-scale system design. The expert 
opinion-driven risk analysis methodology is also being explored in the general areas of 
spacecraft communications system design and spacecraft system design [7]. The follow-
ing are the guidelines of formulating the expert opinions and performing statistical link 
analysis: 
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(1)	 For links in which all signal and noise parameters with uncertainties that are ap-
proximately the same order of magnitude, the Gaussian approximation as de-
scribed in Section II can be used to perform statistical link analysis. For example, 
such cases would include space-to-space links and space-to-Earth links. 

(2)	 There are links that have a gain or loss term with a dominant uncertainty. For 
example, fading loss as a result of ionization due to vehicle hypersonic entry into 
a planetary atmosphere, where vehicle movement causes large excursions in off-
boresight angle of an antenna, and large features on surface terrain can be of the 
order of tens of dB. This fading term should be added to the rest of the parameters 
without invoking the Gaussian assumption. Mathematically, the resulting distri-
bution of the sum is evaluated as the convolution of the pdf of this term with the 
Gaussian distribution of the ensemble of the rest of the terms. The link margin 
can then be computed from this resulting distribution, which can be complicated. 
Another approach is to use a variant of the saddle-point approximation to com-
pute the tail probability as described in Section IV. 

(3)	 The probability distribution functions of flight components will be either rectan-
gular or triangular. For builds of six or fewer units, a rectangular pdf is the most 
likely. If more than six items of a design have been built, the actual values may 
suggest a triangular pdf.8

(4)	 For circumstances where the spacecraft is rolling about an axis, the worst-case 
antenna gain pattern cut should be used as the design value. Uncertainties about 
that value will include measurement error. An exception could be made for an 
“outlier” cut representing less than 1 percent of the pattern. For such a 99 percent 
performance consideration, that cut could be discarded. 

(5)	 A list of common link parameters and their associated pdfs is given in Table 2(a) 
for uplink parameters, Table 2(b) for downlink parameters, and Table 2(c) for 
ranging parameters. These models were implemented in the JPL operational link 
analysis tool suites: the Telecommunications Forecaster Predictor [8,9]. Note that 
all derived parameters, which are functions of other parameters, are assigned 
Gaussian distributions. 

IV. Estimating Link Margin in the Presence of One or More Dominant Terms

As shown in Section II, the Gaussian approximation can be used to greatly simplify the cal-
culations of statistical link analysis as long as there is no dominant term with a large vari-
ance that outweighs that of all the other terms. In situations when one or more dominant 
terms exist, direct convolution or another approximation approach is needed. 

In this section, we introduce the use of saddle-point approximation to estimate the tail 
probability in statistical link analysis. The details of this technique are described in [10], 
which uses a variant of the saddle-point approximation to estimate the detection probabili-
ties of radar and optical communication systems. 

8 Richard Horttor, personal communication, circa 2008.
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Parameter
Name

Table 2(a). Uplink parameters.

PDF 
Type

	 DSN transmitter power	 Triangular

	 DSN transmitter waveguide loss	 Triangular

	 DSN transmit gain	 Triangular

	 DSN pointing control loss	 Triangular

	 DSN EIRP	 Gaussian (derived)

	 UL space loss	 Deterministic

	 UL atmospheric attenuation	 Deterministic

	 S/C receive/gain	 Triangular

	 S/C pointing control loss	 Uniform

	 S/C offpoint loss	 Uniform

	 UL polarization loss	 Uniform

	 S/C receive circuit loss	 Uniform

	 UL Ptotal	 Gaussian (derived)

	 UL SNT	 Triangular

	 UL No	 Triangular

	 UL Pt/No	 Gaussian (derived)

	 UL command carrier/range suppression	 Triangular

	 UL ranging carrier/data suppression	 Triangular

	 UL Pcarrier	 Gaussian (derived)

	 UL Pc/No	 Gaussian (derived)

	 UL carrier loop noise bandwidth	 Uniform

	 UL carrier loop SNR	 Gaussian (derived)

	 UL command data suppression	 Triangular

	 UL Pd/No	 Gaussian (derived)	

	 UL data rate	 Deterministic

	 UL implementation loss or UL radio loss	 Triangular

	 UL Eb/No	 Gaussian (derived)

	 UL data rate capability	 Deterministic (using margined Pt/No or Pd/No  

		  to calculate)
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Parameter
Name

Table 2(b). Downlink parameters.

PDF 
Type

	 S/C transmitter power	 Triangular

	 S/C circuit loss	 Uniform

	 S/C transmit gain	 Triangular

	 S/C offpoint loss	 Uniform

	 S/C pointing control loss	 Uniform

	 S/C EIRP	 Gaussian (derived)

	 DL space loss	 Deterministic

	 DL atmospheric attenuation	 Deterministic

	 DSN receive gain	 Triangular

	 DSN pointing control loss	 Uniform

	 DL polarization loss	 Uniform

	 (For array) DSN array combining loss	 Triangular

	 DL Ptotal	 Gaussian (derived)

	 DL SNT	 Gaussian

	 DL No	 Gaussian

	 DL Pt/No	 Gaussian (derived)

 	DL telemetry carrier/range suppression	 Triangular

 	DL ranging carrier/data suppression	 Triangular

 	(For DOR) DL DOR carrier/data suppression	 Triangular

 	DL Pcarrier	 Gaussian (derived)

	 DL Pc/No	 Gaussian (derived)

	 (For DOR) DL DOR tone suppression	 Triangular

	 (For DOR) DL Ptone/No	 Gaussian (derived)

	 DL carrier loop noise bandwidth	 Deterministic

	 DL carrier loop SNR	 Gaussian (derived)

	 DL telemetry data suppression	 Triangular

	 DL Pd/No	 Gaussian (derived)

	 DL data rate	 Deterministic

	 DL symbol per bit	 Deterministic

	 (Non-BVR receiver, or measured system loss) 	 Triangular 

	 DL implementation loss

	 (BVR) DL radio loss	 Triangular: if strong signal, deterministic  

		  (fixed at 0.3 dB)

	 (BVR) DL subcarrier demod loss	 Triangular

	 (BVR) DL symbol sync loss	 Triangular

	 (Optional) DL decoder loss	 Triangular

	 (Optional) DL waveform distortion loss	 Triangular

	 DL Eb/No	 Gaussian (derived)

	 DL data rate capability	 Deterministic (using margined Pt/No or  

		  Pd/No to calculate
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Parameter
Name

Table 2(c). Ranging parameters.

PDF 
Type

	 UL Pt/No	 Gaussian (derived)

	 UL ranging suppression due to ranging	 Triangular

	 UL ranging filtering loss	 Triangular

	 UL Pr/No	 Gaussian (derived)

	 UL ranging channel BW	 Triangular

	 UL ranging channel SNR	 Gaussian (derived)

	 DL Pt/No	 Gaussian (derived)

	 DL ranging suppression due to ranging	 Triangular

	 DL Pr/No	 Gaussian (derived)

	 DL noisy reference loss	 Triangular

	 DL output Pr/No	 Gaussian (derived)

Let z  denote the sum n  of independent random variables x1,x2,f,xn, where xi  has 
a pdf fxi xi^ h for 1 # i # n. That is, z = xi

i= 1

n
/ . Let fz z^ h denote the pdf of z , and 

Wz s^ h= esz fz
-3

3# z^ hdz denote the characteristic function of fz z^ h. The straightforward 
approach to evaluate fz z^ h as the convolution of fx1 x1^ h, fx2 x2^ h,L fxn xn^ h is usually im-
practical as this involves n- 1  levels of integration. Another approach is to evaluate the 
characteristic function W z s^ h of fz z^ h, which is the product of the characteristic functions 

W x 1 s^ h,W x 2 s^ h,LW x n s^ h of fx1 x1^ h, fx2 x2^ h,L fxn xn^ h. The problem with this approach is that 
it is difficult to invert W z s^ h, which can be a very complicated expression, back to fz z^ h 
Helstrom [10] introduced a variant of the saddle-point approximation that estimates the 
tail probability q+ a^ h= fz z^ hdz

a

3# . This method is useful in the case where the pdf fz z^ h 
can be arbitrarily complicated but its characteristic function W z s^ h is known. This approxi-
mation is particularly useful for small q+ a^ h. The key result is that the approximation of 
q+ a^ h can be expressed as a function of the characteristic function W z so^ h, its first deriva-
tive Wz' so^ h, and its second derivative W z" so^ h, where so^ h is a positive root of some function 
} s^ h. It is shown in [10] that the root exists and there is no need to invert W z s^ h. The main 
result is described below.  

Define the function } s^ h as follows: 

e
s

e ss
s

zW
=}

a- ^^ hh

It was shown in [10] that the solution of } s^ h’s first derivative }' s^ h= 0 exists, and is de-
noted by so^ h. By applying the Taylor series expansion of } s^ h and truncating at the second 
term, it can be shown that the tail probability q+ a^ h can be approximated by

"
q

s

e

2

s

0

0

.a
r}

}

+ ^ ^
^

h
h

h

where }" s^ hdenotes the second derivative of } s^ h. It was shown in [10] that Equation (5) 
suffices for most engineering applications when a is at least one standard deviation from 
the mean E z^ h. Typical link analysis usually requires a link margin of 2 or 3 v (sigma); 

.

(4)

(5)
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i.e., a tail probability q+ a^ h of 2 or 3 standard deviations from the mean E z^ h. Thus, this 
method is useful for statistical link analysis. Table 3 shows the characteristic functions of 
some popular pdfs that can be useful in the saddle-point approximation. A detailed descrip-
tion of the computation of q+ a^ h can be found in [11]. 

Table 3. Characteristic functions of some popular probability density functions.

Name  Probability Density Function  Characteristic Function 

Uniform 

distribution 

(continuous)

Triangular 

distribution

Normal 

distribution

Exponential 

distribution

Gamma 

distribution

Beta 

distribution

  b- a
1

 for  a # x # b

   0 for x < a  or x > b

b - a^ h c - a^ h
2 x - a^ h

 for a # x # c

b - a^ h b - c^ h
2 b - x^ h

 for c # x # b

v 2r

1
exp -

2v2
x- n^ h2e o

me-mx

xk-1
C k^ hik
e -x/i^ h

B a,b^ h
xa-1 1 - x^ hb-1

s b - a^ h
e sb - e sa

2
b- a^ h c- a^ h b- c^ hs2

b- c^ heas- b- a^ heas+ c- a^ hebs

e ns+ 2
v2s2c m

1 -
m
s` j-1

1 - is^ h- k
s < 1/i

1 +
a + b + r
a + r

r= 0

k-1

%c m
k= 1

3

/
k!
sk

for

We illustrate the saddle-point approximation technique with the following example. 
Consider the set of three distributions as shown in Table 4. These distributions have a 
wide range of variances. Figure 4 shows the sizes and shapes of these distributions. 

Table 4. List of probability density functions for illustrative example.

Variables xi  pdf fi xi^ h Mean and Variance

x1: Uniform

x2 : Triangular

x3 : Triangular

f1 x1^ h = 1/4	 for 2 # x1 # 6

	 = 0	 otherwise

f2 x2^ h = 4x2	 for 0 # x2 #  1/2 

	 = 4 1 - x2^ h	 for 1/2 # x2 # 1

	 = 0	 otherwise

f3 x3^ h = 4/3 x3 - 4^ h	 for 4 # x3 # 41/2 

	 = 28/15 - 4/15 x3	 for 41/2 # x3 # 7

	 = 0	 otherwise

Mean = 4.0

Variance = 4/3

Mean = 1/2

Variance = 1/24

Mean = 5 1/6

Variance = 31/72
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Figure 4. Diagram of pdfs used in example.

The random variable z = x1 + x2 + x3 has a distribution f z^ h that can be computed by direct 
convolution of f1 x1^ h, f1 x1^ h, and f3 x3^ h, and is given by the following expression:
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The term f z^ h and its Gaussian approximation f zG z^ h are compared in Figure 5, which 
shows that the Gaussian approximation is not a good approximation in this case when the 
random variables have a wide range of variance values. 

Using the procedure as outlined above, we compute the saddle-point approximation of the 
tail probability q+ a^ h for 9 # a # 14 . Figure 6 shows the approximated values (dotted line) 
compared to the exact values (solid line). This example shows that the saddle-point approx-
imation matches well with the exact function, especially when a is small. 
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Figure 5. fz(z ) and its Gaussian approximation.

Figure 6. Tail probability q+(a) and its saddle-point approximation.
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IV. Conclusion

This article presents three new results in statistical link analyses: 

(1)	 A theoretical result that shows that the Gaussian approximation of statistical link 
analysis is indeed mathematically valid if there is no link parameter with a vari-
ance that is much larger than the others. 

(2)	 A system engineering result that introduces the concept of incorporating ex-
pert opinions as a means to mitigate the lack of statistical knowledge of the link 
parameters. 

(3)	 An implementation result that bypasses the tedious convolution and integration 
procedures by using a variant of saddle-point approximation to compute the tail 
probability of a statistical link analysis. 
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